489 research outputs found

    Development of Spatial Preferences for Counting and Picture Naming

    No full text
    The direction of object enumeration reflects children’s enculturation but previous work on the development of such spatial preferences has been inconsistent. Therefore, we documented directional preferences in finger counting, object counting, and picture naming for children (4 groups from 3 to 6 years, N = 104) and adults (N = 56). We found a right-side preference for finger counting in 3- to 6-year-olds and a left-side preference for counting objects and naming pictures by 6 years of age. Children were consistent in their special preferences when comparing object counting and picture naming, but not in other task pairings. Finally, spatial preferences were not related to cardinality comprehension. These results, together with other recent work, suggest a gradual development of spatial-numerical associations from early non-directional mappings into culturally constrained directional mappings

    The peer model advantage in infants’ imitation of familiar gestures performed by differently aged models

    Get PDF
    Infants’ imitation of differently aged models has been predominately investigated with object-related actions and so far has lead to mixed evidence. Whereas some studies reported an increased likelihood of imitating peer models in contrast to adult models, other studies reported the opposite pattern of results. In the present study, 14-month-old infants were presented with four familiar gestures (e.g., clapping) that were demonstrated by differently aged televised models (peer, older child, adult). Results revealed that infants were more likely to imitate the peer model than the older child or the adult. This result is discussed with respect to a social function of imitation and the mechanism of imitating familiar behavior

    The end-state comfort effect in 3- to 8-year-old children in two object manipulation tasks

    Get PDF
    The aim of the study was to compare 3- to 8-year-old children’s propensity to antici- pate a comfortable hand posture at the end of a grasping movement ( end-state comfort effect ) between two different object manipulation tasks, the bar-transport task, and the overturned-glass task. In the bar-transport task, participants were asked to insert a verti- cally positioned bar into a small opening of a box. In the overturned-glass task, participants were asked to put an overturned-glass right-side-up on a coaster. Half of the participants experienced action effects (lights) as a consequence of their movements (AE groups), while the other half of the participants did not (No-AE groups). While there was no differ- ence between the AE and No-AE groups, end-state comfort performance differed across age as well as between tasks. Results revealed a significant increase in end-state comfort performance in the bar-transport task from 13% in the 3-year-olds to 94% in the 8-year- olds. Interestingly, the number of children grasping the bar according to end-state comfort doubled from 3 to 4 years and from 4 to 5 years of age. In the overturned-glass task an increase in end-state comfort performance from already 63% in the 3-year-olds to 100% in the 8-year-olds was significant as well. When comparing end-state comfort performance across tasks, results showed that 3- and 4-year-old children were better at manipulating the glass as compared to manipulating the bar, most probably, because children are more familiar with manipulating glasses. Together, these results suggest that preschool years are an important period for the development of motor planning in which the familiarity with the object involved in the task plays a significant role in children’s ability to plan their movements according to end-state comfort

    Inter- versus intramodal integration in sensorimotor synchronization: a combined behavioral and magnetoencephalographic study

    Get PDF
    Although the temporal occurrence of the pacing signal is predictable in sensorimotor synchronization tasks, normal subjects perform on-the-beat-tapping to an isochronous auditory metronome with an anticipatory error. This error originates from an intermodal task, that is, subjects have to bring information from the auditory and tactile modality to coincide. The aim of the present study was to illuminate whether the synchronization error is a finding specific to an intermodal timing task and whether the underlying cortical mechanisms are modality-specific or supramodal. We collected behavioral data and cortical evoked responses by magneto-encephalography (MEG) during performance of cross- and unimodal tapping-tasks. As expected, subjects showed negative asynchrony in performing an auditorily paced tapping task. However, no asynchrony emerged during tactile pacing, neither during pacing at the opposite finger nor at the toe. Analysis of cortical signals resulted in a three dipole model best explaining tap-contingent activity in all three conditions. The temporal behavior of the sources was similar between the conditions and, thus, modality independent. The localization of the two earlier activated sources was modality-independent as well whereas location of the third source varied with modality. In the auditory pacing condition it was localized in contralateral primary somatosensory cortex, during tactile pacing it was localized in contralateral posterior parietal cortex. In previous studies with auditory pacing the functional role of this third source was contradictory: A special temporal coupling pattern argued for involvement of the source in evaluating the temporal distance between tap and click whereas subsequent data gave no evidence for such an interpretation. Present data shed new light on this question by demonstrating differences between modalities in the localization of the third source with similar temporal behavior

    Action–effect anticipation in infant action control

    Get PDF
    There is increasing evidence that action effects play a crucial role in action understanding and action control not only in adults but also in infants. Most of the research in infants focused on the learning of action–effect contingencies or how action effects help infants to infer goals in other persons’ actions. In contrast, the present research aimed at demonstrating that infants control their own actions by action–effect anticipation once they know about specific action–effect relations. About 7 and 9-month olds observed an experimenter demonstrating two actions that differed regarding the action–effect assignment. Either a red-button press or a blue-button press or no button press elicited interesting acoustical and visual effects. The 9-month olds produced the effect action at first, with shorter latency and longer duration sustaining a direct impact of action–effect anticipation on action control. In 7-month olds the differences due to action–effect manipulation were less profound indicating developmental changes at this age

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability
    corecore